

Generation Resiliency Project

Presentation of Findings and Recommendations To City Council, City of Manitowoc

May 18, 2020

Prepared by

Manitowoc Public Utilities

[&]amp;

Outline of Presentation

- Introduction
- Overview of the Existing System
- Generation Resiliency Options
- Electric Distribution System Energized (Resiliency)
- Conclusions of the Studies
- Project Financing
- MPU Commission Recommendations
- Questions/Discussion

Team Members

- MPU Staff
 - Nilaksh Kothari:
 - Cindy Carter:
 - Don Duenkel:
 - Andy Onesti:
- Consultants
 - Dick Sterken:
 - Marcus Chandrapal:
 - Mike Borgstadt:
 - Dave Seitz.:
 - Larry Becker:

Black & Veatch Black & Veatch Burns & McDonnell TRC Consulting Frontier Consulting

CEO & General Manager Senior Manager - Business Services Senior Manager - Utility Operations Senior Manager - Technical Services

OVERVIEW OF EXISTING SYSTEM

- Vision/Goals/Strategic Focus of MPU
- Facts in Brief
- Sources of Capacity
- ATC/MPU Transmission Interconnections
- Electric Industry Changes and Challenges
- Summary of Existing System

Manitowoc Public Utilities

Facts in Brief-2019

- Annual Energy Sales:
- Annual Steam Sales
- Annual Peak Demand
- Electric Substations
 - Lakefront
 - Dewey Street
 - Custer Street
 - Northeast
 - Rapids
 - Revere Street
 - Mirro (Supplies Skana only)
- Distribution System
 - 250 Miles Overhead and Underground Wires
 - 13,200 Volts and 4,160 Volts (limited to a portion of downtown)
- Retail Electric Utility Revenues \$41 million

518,927 MWH (retail) 133,206 MWH (wholesale) 210,000 klbs 99.6 MW

Sources of Capacity (2004 versus 2020)

Manitowoc Public Utilities

2004	2020
70.0 MW	77.0 MW
11.0 MW	0.0 MW
22.0 MW	22.0 MW
20.0 MW	10.0 MW
50 Years / 15.0 MW	Retired
46 Years / 17.5 MW	Retired
38 Years / 17.5 MW	Retired
14 Years / 21.0 MW	30 Years / 21.0 MW
	16 Years / 63.4 MW
11.0 MW	Retired
22.0 MW	41 Years / 22.0 MW
	Retired
	Retired
51 Years	Retired
46 Years	62 Years
38 Years	Retired in-place
	16 Years
	2004 70.0 MW 11.0 MW 22.0 MW 20.0 MW 50 Years / 15.0 MW 46 Years / 17.5 MW 38 Years / 17.5 MW 14 Years / 21.0 MW 11.0 MW 22.0 MW 51 Years 46 Years 38 Years

Note: Diesel units used to start Boilers 5, 6, 7 & 8 in the event of a transmission system outage.

ATC Transmission / MPU Interconnection

- In the last decade dramatic changes in electric industry:
 - More wind and solar generation, i.e. intermittent power generation
 - Several nuclear and fossil fuel (coal) power plants shut down
 - New base load generation is almost exclusively using natural gas
- Other challenges include:
 - Boilers 8 & 9 dependent on transmission power to start up & operate
 - Climate change risks more natural disasters like tornados, flooding, etc.
 - Increase in cyber attacks
 - Distributed generation
 - Battery storage
 - Electric Vehicles
- All of the above increase risks:
 - Instability and reliability of transmission grid

A Major Transmission Failure – City Area With Power

- MPU historically has added and removed generating assets for more than 100 years depending on the needs and life of the equipment
- There are three interconnections between ATC & MPU
- In the last decade dramatic changes in electric industry with i.e. intermittent power generation such as wind and solar has potentially resulted in:
 - A decrease in stability and reliability of transmission grid
 - MPU's inability to start boilers and provide power to city
- MPU Commission concerned on the consequences of a major transmission system failure which include:
 - MPU has no back-up power to start boilers 8 and 9
 - Loss of water pressure may cause boil water advisory
 - Loss of Wastewater Treatment and Lift Stations
 - General concern of public health and safety
- August 2003 black out in eastern U.S. and Canada lasted more than 5 days

GENERATION RESILIENCY

- Summary of Planning and Engineering Studies
- Risk Assessment Findings
- Options Evaluated
- Costs
- Summary of Studies

Burns & McDonnell Study - 2013

- MPU Commission authorized multiple studies from 2013- 2019
- Burns & McDonnell retained to perform a Condition Assessment of Power Generation Facilities.
- Conclusions of the Study:
 - Confirmed Boiler 8 and 9 need power supply within 15 30 minutes to avoid plugging loop seal. Unplugging the loop seal may take several days.
 - Diesel #2 not adequate to start Boiler 8 or Boiler 9 and keeping it operational long term not feasible
 - Infrastructure is not in place to use the Custer CT to start Boiler 8 or Boiler 9
 - New fast start generation is best option to start Boiler 8 or 9

- Black & Veatch retained in 2015 to follow up on conclusions of previous study.
- Objectives of the Study:
 - Conduct high level risk assessment of disasters
 - Confirm the size of the generating unit required to start boiler(s)
 - Assess technologies for the new generating unit
 - Cost estimates of the proposed options
 - Present findings to MPU Commission

RISK ASSESSMENT

- Renewable Resources
- Natural & Man-Made Disasters
- > Summary

RENEWABLE ENERGY GROWTH – RISK AREAS

Renewable electricity generation by fuel type in the AEO2015 Reference case hillion kilowatthours

Source: U.S. Energy Information Administration (April 2015).

eia

IMPACTS OF RENEWABLE ENERGY

- Renewable targets of 30-50% in some states are likely to be problematic for transmission grid stability.
- Most of the renewable growth is from <u>non-dispatchable</u> sources (Wind and Solar)
- Because they are non-dispatchable these sources supplement base load generation (hydro, natural/gas, nuclear, and coal)
- Grid instability increases.

RISK ASSESSMENT

Natural Disasters

- Tornado
- Intense Wind Storm
- Floods
- Blizzard / Ice Storms
- Lightning Strike
- Man-made Disasters
 - Cyber Attack
 - Fire at Power Plant
 - Chlorine gas leak
 - Human Failure

SUMMARY OF DISASTERS

Following are MPU vulnerabilities from disasters

- A tornado or intense wind storm can knock out transmission system
- An ice storm can knock out above ground transmission system
- A cyber attach may or may not impact transmission or generation at MPU
- A lightning strike will most likely result in loss of generation
- A chlorine gas leak should not cause loss of power

SUMMARY OF RISK ASSESSMENT

- MPU is dependent upon the grid for restoration of power to Boilers 8 & 9
- Renewable energy resources has resulted in grid instability
- Impacts of an **extended** outage can be severe
 - J-valve solidification disabling boilers for 3 to 5 days
 - Customer Health and Safety (Loss of power for food refrigeration, normal health care services, traffic control normal police services etc.)
 - Loss of Water Distribution System Pressure
 - City of Manitowoc, as confirmed by County, does not have enough shelter facilities with back-up power generation.

- ATC meeting September 22, 2016:
 - Cannot guarantee power into Manitowoc in 30 minutes or less
 - Confirm funding is not available for ATC/MISO for a fast start unit for MPU
 - ATC will allow MPU distribution system to be isolated from transmission grid with approval
- MPU needs to provide power to City of Manitowoc without ATC transmission line loop around the city.

OPTIONS ASSESSED

- Various Technologies Assessed
- Various Sites Assessed
- Cost Estimates at Alternative Sites

- Following technologies were assessed:
 - Single Combustion Turbine (CT)
 - Single Reciprocating Internal Combustion Engine (RICE)
 - Multiple Reciprocating Engines
 - Express sub-transmission line from Custer CT to Columbus Street Power Plant
- Following sites were assessed:
 - Columbus Street near Power Plant
 - Lakefront across from WWTP
 - District Heat Site on South 7th Street

Cost Estimates of Options

	CAPITAL COST	NPV
1 - Existing Columbus Street Plant	\$16,990,000	(\$6,299,262)
2a – Lakefront Location #1 OH TL	\$35,796,411	(\$26,630,269)
2b – Lakefront Location #1 UG TL	\$36,282,560	(\$27,155,821)
3a – Downtown District Heat OH TL	\$35,105,944	(\$25,883,826)
3b – Downtown District Heat UG TL	\$35,430,044	(\$26,234,202)
4a – 8 th St. Substation OH TL	\$34,460,717	(\$25,186,293)
4b - 8 th St. Substation UG TL	\$34,703,792	(\$25,449,069)
5a – Custer to Columbus AG T-Line	\$6,812,960	(\$7,365,274)
5b – Custer to Columbus UG T-Line	\$9,045,280	(\$9,778,558)

Conclusions of the Study

- Columbus Street generation plant is important for local electricity reliability and a part of a system that people need and depend on 24/7.
- MPU is dependent upon the grid for restoration of power.
- Impacts of an extended outage can be severe.
- New generation to start boilers 8 & 9 is required when transmission service to the MPU territory is lost.
- 10-12 MW generator to start B9 with ID fan, PA fan, and Feed pumps with soft-start conversion.
- 8 MW generator needed for restart of Boiler 8.
- The various technologies and sites were evaluated.
- Benefit of supplementary power generating capacity Water Plant & CBCWA water delivery; avoidance of capacity market purchases.

- Plant upgrades for island operation (micro-grid) include Generator 5 Excitation and Governor, Turbine 9 Governor, and Plant Tie Transformer Relaying
- A diesel and/or natural gas Reciprocating Internal Combustion Engine (RICE) will be the low cost option
- The estimated construction cost depending on technology varies from \$ 17 to \$35 million
- Custer Street (CT) express line to Power Plant does not have the lowest Net Present Value.
- Issues to be addressed: cost, emissions, permitting issues.

- October 2018 Objectives of the Study
 - Assess the two selected RICE options:
 - Gray Market Wärtsilä Model 12V50DF: 1 unit, in new building
 - New Jenbacher JGC 620: 4 units, containerized
 - Locate either option at south end of Columbus Street Power Plant
 - Perform a detailed construction cost estimate
 - Perform a 20 year Net Present Value analysis of the two options
 - List Pros and Cons of each option

CAPITAL COSTS OF TWO SELECTED ALTERNATIVES

CAPITAL COST ESTIMATE SUMMARY							
ITEM DESCRIPTION	OPTION 1: WÄRTSILÄ TOTAL COST		OPTION 2: JENBACHER TOTAL COST				
Civil/Structural	\$	1,401,693	\$	836,726			
Mechanical/Piping	\$	8,501,838	\$	12,274,202			
Electrical/Controls	\$	1,129,170	\$	1,417,242			
Direct Total	\$	11,032,701	\$	14,528,170			
Indirects							
Engineering	\$	1,560,000	\$	1,950,000			
Construction Management	\$	551,635	\$	726,408			
Start-up & Commissioning	\$	257,400	\$	400,400			
Subtotal	\$	13,401,736	\$	17,604,978			
Contingency	\$	1,340,264	\$	1,760,322			
Grand Total	\$	14,742,000	\$	19,365,300			

GENERATION OPTIONS SUMMARY

Option	Capital Cost	NPV	Advantages/Disadvantages
1 – One Wärtsilä Model 12V50DF – unused and Gray Market	\$14,742,000.00	(\$13,067,000)	Advantages: • Lower NPV • Higher thermal efficiency: less fuel, lower operating cost • Full generation capacity on both primary and secondary fuel Disadvantages: • Requires an SCR
2 – Four Jenbacher JGC 620	\$19,365,300.00	(\$14,232,000)	Advantages: • May not require an SCR • Start-up time will be less for the smaller gensets Disadvantages: • Derate on secondary fuel: 6.86MW at full capacity on propane

SITE LOCATION

- Additional improvements needed at the Power Plant:
 - Steam By-Pass for B8 & B9 and other plant modifications required for Black Start = \$1,833,000
 - New 13.8kV and 480V Black Start buses = \$850,000
 - Equipment only cost for New Soft Starters on B9 ID & PA fan, B8 FD fan = \$353,000
 - Allowance for demo/modifications to existing plant for VFD space and cable removal = \$50,000
 - Indirect Costs (Contingency, Engineering) = \$1,389,000
- TOTAL ESTIMATED COSTS = \$4,475,000 \$5,200,000

- Generation with Gray Market Wärtsilä of 11.3 MW is the preferred option lowest NPV.
- Wärtsilä provides a dual fuel option natural gas and diesel fuel.
- The estimated construction cost is approximately \$15 million.
- The generating unit will meet the following objectives:
 - Boiler 8 and 9 can continue to operate if dispatched
 - Following facilities will have power within 2 hours:
 - Water Treatment Plant/Wastewater Treatment Plant
 - City Fire and Police
 - County Jail & Dispatch Center
- Additional modifications required at the Power Plant for \$5.0 million.
- Total project cost estimated at \$20 million.

ELECTRIC DISTRIBUTION SYSTEM ENERGIZED/RESILIENCY

- > Objectives
- City Areas Energized
- > Summary

- Since 1963-64 MPU distribution has been connected to the regional electric transmission system
- Identify what areas of the City can and cannot served in the event of a transmission system outage
- Identify areas that can be served based on availability of different generation resources
- Identify any areas of the City that cannot be served without the transmission system even if most generation is available

City Areas – Energized

• 11.3 MW (RICE) Generation only operating

• RICE + Custer CT

City Areas – Energized (Cont'd)

• RICE + B8/B9 + Custer CT

City Areas - Energized (Cont'd)

- RICE + CT + B8/B9 + SUBTRANSMISSION EXPRESS LINE
- No Power to SKANA

- A large portion of City can be energized without 69 kV transmission line with MPU electric distribution system intact.
- A sub-transmission line will be required from Power Plant Substation to Revere Substation at an estimated cost of \$2 million with contingency to energize the NE part of the City, except SKANA.
- The objective is to first power those facilities that are important to health and safety within 2-4 hours of a major power outage.
- The remainder of City will have power within 16-24 hours of a major power outage.

CONCLUSIONS OF THE STUDY

Conclusions of the Study

- Fast Start Generating Capability of 11.3 MW at Columbus Street Plant provides:
 - Ability to power large portion of City without 69 KV
 - Maintain Steam Customers
 - Ability to operate Water and Waste Water Facilities
 - Support Customer Health and Safety
 - Protect Power Plant Assets
- Wärtsilä Engine from Tote are apparent best option:
 - Lowest NPV
 - Ability to provide full power on secondary fuel (function in the event of a Natural Gas outage)
- A sub-transmission line from Power Plant to Revere Substation
- The total project cost for resiliency of generation and electric distribution is estimated at \$22 million.

PROJECT FINANCING

Project Financing

> Rate Impact

- The project has been in planning since 2013
- The project is expected to be operational in Fall 2022 or Spring 2023.
- The total project cost is not to exceed \$22 million which includes:
 - An 11.3 MW Wartsila engine generation \$15 million
 - Modifications at the Power Plant \$5 million
 - A subtransmission line from Lakefront Substation to Revere Substation - \$2 million
- <u>No borrowing</u> is required for the project as MPU Commission has been planning for this major capital improvement

Rate Impact

- History of Rate Adjustments
 - May 2009: -4.0%
 - July 2014: -2.0%
 - October 2016: -3.5%
 - May 2020: -5.5%
- The projected rate increase in 2023 is between 0.0% 3.0% depending on the following:
 - Energy prices in the market
 - Capacity price offset from market purchase
- MPU payment of PILOT to City increases by approximately \$350,000 in 2023 annually.

MPU COMMISSION RECOMMENDATION TO CITY COUNCIL

Action Plan

- The 11.3 MW boiler project will take 24-36 months, depending on the time it takes to obtain PSC and DNR permits
- Steps to be taken during the next 12 months include:
 - Submit filings with PSCW and WDNR to support construction of the project
 - Evaluate quotations received and negotiate contracts contingent on PSC/DNR approval
 - File a MISO/ATC generation-transmission interconnect agreement and obtain approval
 - Complete detailed engineering and bid the project

- MPU Commission unanimously approved proceeding with the expansion of the local generating facility with 11.3 MW boiler project.
- MPU Commission is recommending that the Finance Committee and City Council approve the project for up to \$22 million for resiliency of generation and electric distribution system.

QUESTIONS/DISCUSSION